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Theoretical approximation to transient heat conduction in
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Abstract. Comparison is made between the numerical solution for temperature histories at a nuclear waste site and
the analytical solution of a correlated thermal problem. The differences between both solutions are found. Both
problems are nonlinear diffusion problems connected with the disposal of nuclear wastes.

1. Introduction

The safety repository of nuclear waste in a geologic formation implies considerations about
the thermophysical properties and dimensions of the host rock as well as the depth of the
burial, tectonic stability and the hydrologic properties of the rock [9]. From the thermal
point of view, the first two considerations are the important ones. Moreover, the temperature
in the near-field as in the far-field of a repository is probably the most important single
parameter concerning the safe disposal of high-level waste. Therefore, the determination of
temperature change is essential in the design and environmental impact of the facility. This
determination implies a need to find a solution to the heat conduction equation.

The general thermal problem of a nuclear waste repository (NWR) is a time-dependent,
nonlinear, non-homogeneous, multidimensional heat conduction problem. To predict the
thermal field and the heat transfer rates from a NWR, several computer codes have been
applied using finite-difference and finite-element methods [3], [7]. However, just a few
analytical approaches to a NWR thermal problem have been made. Sweet and McCreight
[8], based on reference [1], solve exactly the simplified one-dimensional semi-infinite linear
Waste Isolation Pilot Plant (WIPP) problem. The lack of analytical approaches to the NWR
thermal problem is due to the nonlinearity of the heat conduction NWR equation. The
purpose of this study is to solve numerically the nonlinear one-dimensional NWR thermal
problem and then, in an effort to solve analytically the thermal problem, a new nonlinear
problem is defined and its analytical solution is compared with the numerical solution of the
original problem.

2. Controlling equations

The one-dimensional, nonlinear model for the temperature distribution in a nuclear site is
given by the following partial differential equation (for a definition of symbols, see Section 7:
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Nomenclature)

ax ( = J CT) () t (1)

where

T = T(x, t), k(T) = koF(T) (2)

and

C(T) = (T)c,(T) = Co. (3)

Boundary and initial conditions, T(x, t):

OR
1. k(T) x (0, t) = -q(t), (subterranean site)

2. T(l, t) = T., (surface)

3. T(x, O) = To.

The geometry and dimension of a NWR suggest that this model is reasonable, see [4] and
[10].

The specific behavior of the thermophysical properties (k = k(T) and C(T) = C a
constant, see [8] and [4]) in a NWR makes the one-dimensional nonlinear heat condution
problem very difficult to solve analytically. However, if it is assumed that

C(T) = e(T)cp(T) = CoF(T), (4)

then the problem defined by equations (1), (2), (4) and the boundary and initial conditions
can be solved analytically, see [2]. Let us call this problem and the original one as problems
A and B or cases A and B respectively.

3. Analytical solution

The transient problem is subject to a nuclear heat source of the form

q(t) = 0 e-', (5)

see [4], and the thermal conductivity is from [8],

k(T) = koF(T) = ko(Ta/T) P , (6)

so using equations (4) and (6) gives

C(T) = CO(Ta/T) = QOCpo(Ta/T)P. (7)
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The transformation

V(T) = fr k(T) dT, (8)

which is the Kirchhoff transformation, is used to solve analytically the nonlinear problem. The
exact solution is given by the following equation

T(x, t) T[I p- 1 V(xt)rl ) (9)

where V(x, t) is the transformed temperature given by

x/J0 sin 2x/1 ( - x)e-;"V(x, t) = + 0 ,e s 4(cos VT/_O~Cl

2 ° e- ( V - c OC sin y(l - x) (10)

1 )" (nx - non1 )

where

(2n- 1)
Yn 21 , n = 1, 2, 3,...

and

V-- p - 1 [ T ) ] Tr ] (11)

and

V koTr [1- (Tr ( Ta) (12)

Equation (9) with equation (10) represent the transient solution to the thermal problem
A. To analyze the steady-state solution let us assume for simplicity that Tr = Ta = T, then
V, = V = 0. The steady-state situation occurs when t - oo, so /(t) - 0 and from equation
(10), V(x, oc) = 0. Substitution into (9) gives T(x, oo) = Tr = T, = To, which is the
expected value.

4. Numerical solution

The problem defined by equations (1), (2), (3) and the initial and boundary conditions
(Problem B) is solved numerically using a standard implicit scheme of the finite-difference
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Table 1. NWR parameters, nuclear waste in salt.

Case A
C = 2298 kJ/m3°K cc, = 74.92m 2/yr

Case B
C = 1789.2 kJ/m 3 °K acO = 96.24m 2 /yr

Common parameters
k0 = 5.46watts/m K I = 660m
p = 1.21 To = T, = = T,= 300°K

HLW nuclear waste
q = 12 watts/m 2 47.4 yrs1//~ = 47.4yrs

TRU nuclear waste
q0 = 0.7 watts/m2 1/ = 31250yrs

t
with A = In 2/t,/2

method. Special care was taken with the boundary condition at x = 0. It was treated with
a central difference of second-order approximation [5].

Table 1 gives a listing of the parameters used to plot the solutions. Two thermal load
models were used. One corresponds to high-level waste (HLW) with 12 w/m2 as the initial
thermal load and 32.9 years as the half-life. Another corresponds to transuranic nuclear
waste (TRU) with 0.7w/m2 and 21661 years as the initial thermal load and half-life,
respectively.

5. Results

Using equations (9) and (10) and the values of Table 1, Fig. 1 was made, it shows the typical
thermal behavior of a NWR. At x = 0, AT(= T(x, t) - T) starts from zero, then increases
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Fig. 1. Transient thermal response at several points above a NWR with an areal thermal load of 12w/m2 (HLW)
located 660 m deep in rock salt. Labels on curves indicate depth above NWR.
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Fig. 2. Comparison of the exact solution of case A and the numerical solution of case B using HLW nuclear waste.
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Fig. 3. Comparison of the exact solution of case A and the numerical solution of case B using TRU nuclear waste.

its value until it reaches a maximum and then decreases until it reaches zero again, this last
stage corresponding to the steady-state situation. Also the figure shows that for the same
time, AT decreases as x increases.

Figure 2 shows the solution of the problems A and B when HLW is used. It clearly shows
the difference in the thermal response of the two problems. For case B, A T(max) was 98.7°C
and for case A it was 94.6°C. In both cases the maximum occurs at 41 years. The difference
represents an error of 4%. In Fig. 4 the differences between solutions were plotted. It shows
that for times between 16 years and 2400 years, case A had a lower temperature than case
B. Out of this time interval the inverse is true.
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Fig. 4. Differences of the exact and numerical solutions of Figs. 2 and 3.

In Fig. 3 TRU waste is considered. It shows that the thermal response of the two cases
are similar to the ones of Fig. 2. However, the differences in temperature are smaller, as can
be seen in Fig. 4. For case B, AT(max) was 80.6°C. The maxima occur approximately at the
same time (5700 years for case B and 6100 years for case A). The difference in temperatures
represent an error of 1.6%. The differences between the solutions also were plotted in
Fig. 4. In this case, in the time interval between 5 years and 9000 years, case A had a lower
temperature than case B. This is similar to the curve obtained for HLW.

From the above results, it is reasonable to state that the theoretical approximation, case
A, to the more realistic case, case B, is good within an error of 1.6% and 4% for TRU and
HLW respectively. This is the worst case; for other depths, where the temperature differences
are smaller, the errors are also smaller. Also, it is observed that in both nuclear wastes
considered, for the region where the maximum temperature rise occurs, case A acts as a lower
limit of the most realistic case, case B.

It is important to note that when equation (4) is used a large error is introduced to the
model of the density-specific heat product. That is the case, because the actual behavior of
that product is almost constant for the geological media considered in this paper (rock salt).
The error is as large as 48%. However, the maximum error in the temperature rise of case
A with respect to case B was as low as 4% for HLW and 1.6% for TRU, as just stated.

6. Conclusion

The analytical solution of problem A was shown to be a good approximation to the
numerical solution of problem B. The importance of the analytical solution, equations (9)
and (10), is that it gives an explicit relation between the main parameters that control the
thermal behavior of a NWR. It can be used for design purposes.
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7. Nomenclature

c, Constant-pressure heat, J/kg °K
C Density-specific heat product, J/m3 °K
F(T) Function of T
k Thermal conductivity, w/m °K
I Thickness of geological layer, m
n Natural number
p Exponent in a polynomial expression
q Heat flux, w/m 2

t Time, years
T Temperature, °K
Ta Reference temperature for k, °K
Tr Reference temperature for V(T), °K
V Transformed temperature, w/m
x Spatial coordinate, m

Greek symbols

a Thermal diffusivity, m2 /yrs
Decay constant, yrs-'

Yn Expansion coefficient, m-'
e Density, kg/m3

Subindex

n Index, n = 1, 2, 3,...
0 Reference value at t = 0
I Reference value at x = 1
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